MULTIPLICAÇÃO E DIVISÃO: SIGNIFICADOS
(Parâmetros Curriculares Nacionais)
Uma abordagem frequente no trabalho com a multiplicação é o estabelecimento de uma relação entre ela e a adição. Nesse caso, a multiplicação é apresentada como um caso particular da adição porque as parcelas envolvidas são todas iguais. Por exemplo:
· Tenho que tomar 4 comprimidos por dia, durante 5 dias. Quantos comprimidos preciso comprar?
A essa situação associa-se a escrita 5 x 4, na qual o 4 é interpretado como o número que se repete e o 5 como o número que indica a quantidade de repetições.
Ou seja, tal escrita apresenta-se como uma forma abreviada da escrita
4 + 4 + 4 + 4 + 4.
A partir dessa interpretação, definem-se papéis diferentes para o multiplicando (o número que se repete) e para o multiplicador (o número de repetições), não sendo possível tomar um pelo outro. No exemplo dado, não se pode tomar o número de comprimidos pelo número de dias. Saber distinguir o valor que se repete do número de repetições é um aspecto importante para a resolução de situações como esta.
No entanto, essa abordagem não é suficiente para que os alunos compreendam e resolvam outras situações relacionadas à multiplicação, mas apenas aquelas que são essencialmente situações aditivas.
Além disso, ela provoca uma ambiguidade em relação à comutatividade da multiplicação.
Embora, matematicamente, a x b = b x a, no contexto de situações como a que foi analisada (dos comprimidos) isso não ocorre.
Assim como no caso da adição e da subtração, destaca-se a importância de um trabalho conjunto de problemas que explorem a multiplicação e a divisão, uma vez que há estreitas conexões entre as situações que os envolvem e a necessidade de trabalhar essas operações com base em um campo mais amplo de significados do que tem sido usualmente realizado.
Dentre as situações relacionadas à multiplicação e à divisão, a serem exploradas nestes dois ciclos, podem-se destacar, para efeito de análise e sem qualquer hierarquização, quatro grupos:
Num primeiro grupo, estão as situações associadas ao que se poderia denominar multiplicação comparativa.
Exemplos:
· Pedro tem R$ 5,00 e Lia tem o dobro dessa quantia. Quanto tem Lia?
· Marta tem 4 selos e João tem 5 vezes mais selos que ela. Quantos selos tem João?
A partir dessas situações de multiplicação comparativa é possível formular situações que envolvem a divisão. Exemplo:
· Lia tem R$ 10,00. Sabendo que ela tem o dobro da quantia de Pedro, quanto tem Pedro?
Num segundo grupo, estão as situações associadas à comparação entre razões, que, portanto, envolvem a ideia de proporcionalidade.
Os problemas que envolvem essa ideia são muito frequentes nas situações cotidianas e, por isso, são mais bem compreendidos pelos alunos.
Exemplos:
· Marta vai comprar três pacotes de chocolate. Cada pacote custa R$ 8,00. Quanto ela vai pagar pelos três pacotes? (A ideia de proporcionalidade está presente: 1 está para 8, assim como 3 está para 24.)
· Dois abacaxis custam R$ 2,50. Quanto pagarei por 4 desses abacaxis? (Situação em que o aluno deve perceber que comprará o dobro de abacaxis e deverá pagar — se não houver desconto — o dobro, R$ 5,00, não sendo necessário achar o preço de um abacaxi para depois calcular o de 4.)
A partir dessas situações de proporcionalidade, é possível formular outras que vão conferir significados à divisão, associadas às ações “repartir (igualmente)” e “determinar quanto cabe”.
Exemplos associados ao primeiro problema:
· Marta pagou R$ 24,00 por 3 pacotes de chocolate. Quanto custou cada pacote? (A quantia em dinheiro será repartida igualmente em 3 partes e o que se procura é o valor de uma parte.)
· Marta gastou R$ 24,00 na compra de pacotes de chocolate que custavam R$ 3,00 cada um. Quantos pacotes de chocolate ela comprou? (Procura-se verificar quantas vezes 3 cabe em 24, ou seja, identifica-se a quantidade de partes.)
Num terceiro grupo, estão as situações associadas à configuração retangular.
Exemplos:
· Num pequeno auditório, as cadeiras estão dispostas em 7 fileiras e 8 colunas. Quantas cadeiras há no auditório?
· Qual é a área de um retângulo cujos lados medem 6 cm por 9 cm?
Nesse caso, a associação entre a multiplicação e a divisão é estabelecida por meio de situações tais como:
· As 56 cadeiras de um auditório estão dispostas em fileiras e colunas. Se são 7 as fileiras, quantas são as colunas?
· A área de uma figura retangular é de 54 cm2. Se um dos lados mede 6 cm, quanto mede o outro lado?
Num quarto grupo, estão as situações associadas à ideia de combinatória.
Exemplo:
· Tendo duas saias — uma preta (P) e uma branca (B) — e três blusas — uma rosa (R), uma azul (A) e uma cinza (C) —, de quantas maneiras diferentes posso me vestir?
Analisando-se esses problemas, vê-se que a resposta à questão formulada depende das combinações possíveis; no segundo, por exemplo, os alunos podem obter a resposta, num primeiro momento, fazendo desenhos, diagramas de árvore, até esgotar as possibilidades:
(P, R), (P, A), (P, C), (B, R), (B, A), (B, C):
Esse resultado que se traduz pelo número de combinações possíveis entre os termos iniciais evidencia um conceito matemático importante, que é o de produto cartesiano.
Note-se que por essa interpretação não se diferenciam os termos iniciais, sendo compatível a interpretação da operação com sua representação escrita. Combinar saias com blusas é o mesmo que combinar blusas com saias e isso pode ser expresso por 2 x 3 = 3 x 2.
A ideia de combinação também está presente em situações relacionadas com a divisão:
· Numa festa, foi possível formar 12 casais diferentes para dançar. Se havia 3 moças e todos os presentes dançaram, quantos eram os rapazes?
Os alunos costumam solucionar esse tipo de problema por meio de tentativas apoiadas em procedimentos multiplicativos, muitas vezes representando graficamente o seguinte raciocínio:
· Um rapaz e 3 moças formam 3 pares.
· Dois rapazes e 3 moças formam 6 pares.
· Três rapazes e 3 moças formam 9 pares.
· Quatro rapazes e 3 moças formam 12 pares.
Levando-se em conta tais considerações, pode-se concluir que os problemas cumprem um importante papel no sentido de propiciar as oportunidades para as crianças, do primeiro e segundo ciclos, interagirem com os diferentes significados das operações, levando-as a reconhecer que um mesmo problema pode ser resolvido por diferentes operações, assim como uma mesma operação pode estar associada a diferentes problemas.
O algoritmo da multiplicação
(Pró-letramento)
Dividiremos a etapa de aprendizagem do algoritmo da multiplicação em três estágios. Trabalhar com os alunos diferentes registros e representações pode ajudá-los a compreender as regras do algoritmo. Como na adição e na subtração, enfatizamos que o algoritmo (às vezes chamado de “conta em pé”) só precisa começar a ser utilizado para multiplicações nas quais um dos fatores tem mais do que um algarismo. Multiplicações entre números de apenas um algarismo são fatos básicos (tabuada) e o algoritmo não ajuda a encontrar seu resultado.
1° estágio – Observe como podemos representar a multiplicação de 36 por 4.
Faça a seguinte arrumação na conta:
Pergunte aos alunos:
- “Que resultado obtivemos depois que multiplicamos 4
por (30+6)?”
- “O que precisamos fazer com os resultados 24 e 120
para encontrar o resultado desta multiplicação?”
O aluno deve concluir que é preciso somar estes dois resultados parciais, recorrendo ao
algoritmo da adição.
Com apoio de material concreto você pode ajudar seus alunos a compreenderem que multiplicamos
6 unidades por 4 e 3 dezenas também por 4 e que, depois, juntando os resultados encontrados
(120 e 24) chegamos ao resultado, 144.
A partir destas experiências, resta apenas associá-las ao registro formal do algoritmo da multiplicação, escrevendo os resultados parciais de forma conveniente para o uso do algoritmo da adição.
2° estágio – Incentive o cálculo mental
Nesse estágio, a criança já deve ter fixado todo o desenvolvimento do processo para que possa efetuar mentalmente algumas operações.
Por exemplo:
Para multiplicar 32 por 6, efetue a operação com a criança, mostrando que ao multiplicarmos o 6 por 2, escrevemos como resultado parcial apenas as duas unidades, guardando mentalmente a dezena do produto 12. Explique que esta dezena será adicionada às outras dezenas do produto, quando multiplicarmos as 3 dezenas por 6.
3° estágio – Multiplicação por números de dois dígitos
Nesta última etapa, veremos o algoritmo da multiplicação de dois números, cada um deles representado no SDN por dois algarismos. Neste momento, as crianças já devem ter uma base para aprender o algoritmo, o que inclui um mínimo de novas técnicas.
Por exemplo:
Vamos calcular o produto de 43 por 27.
Iniciamos por fazer o produto 7 x 43.
Faça essa etapa com as crianças, mostrando que estamos multiplicando sete unidades por 43 e que o processo é igual ao da etapa anterior.
Efetue, agora, o produto das duas dezenas que será adicionado ao produto das unidades. Dê muita ênfase ao valor do 2 no número 27, ou seja, enfatize que ele representa 2 dezenas; logo, nessa segunda multiplicação, estaremos multiplicando o 3 por duas dezenas e obteremos 6 dezenas, que devem ser colocadas na ordem das dezenas. Em seguida, mostre que ao multiplicarmos as duas dezenas por 4 dezenas acharemos 8 centenas, as quais devem ser colocadas na ordem das centenas.
O desenvolvimento deste algoritmo deve ser feito através de muitos e variados exercício.
O algoritmo da divisão por subtrações sucessivas
O processo das subtrações sucessivas é uma opção para se efetuar a divisão, e tem como ponto de partida a relação que existe entre a subtração e a divisão. Optamos por apresentá-lo neste fascículo para enriquecer e ampliar seu conhecimento sobre a divisão. Consideramos que este algoritmo também é uma boa opção para alunos que tenham dificuldades na compreensão e utilização do algoritmo da divisão, apresentado através dos processos longo e abreviado. Quando o processo das subtrações sucessivas é bem explorado, a criança consegue efetuar as etapas necessárias com segurança e estabelece mais facilmente relações com o algoritmo longo da divisão, o que contribui para a compreensão de todo o processo.
Apresente o esquema do algoritmo (escreva apenas o 18 e o 3) e converse sobre a forma como ele se apresenta. Paralelamente, dê 18 objetos para os alunos e peça que formem grupos de três elementos. Peça que tirem um grupinho de três elementos de cada vez, e pergunte.
- “Quantas vezes você tirou grupos de três elementos?” (6)
Numa primeira apresentação do algoritmo pelo processo das subtrações sucessivas registre com seus alunos cada uma das vezes que retirarem um conjunto de 3 elementos, fazendo perguntas que relacionem a ação sobre os objetos e o registro.
- “Como descobriremos quantos objetos você retirou, se você retirou uma vez 1 conjunto?” (multiplicando 1 por 3).
- “Quantos objetos você tirou?” (3).
- “Que devo fazer para saber com quantos objetos você ficou?” (subtrair 3 de 18).
- “Posso continuar tirando grupos de três, agora que tenho 15 objetos?”
(sim) ... continue ...
- “Agora, que você não pode mais tirar nenhum grupo de 3, responda: quantas vezes você tirou um conjunto de três?” (6)
- “Que operação você fez para achar essa quantidade?” (adição dos “uns”)
Observação: repita as perguntas até se esgotarem todas as possibilidades de se retirarem grupos de três, observando as quantidades restantes e fazendo o registro no algoritmo depois de cada pergunta; não o apresente pronto como está ilustrado acima.
Depois de algumas atividades como esta e entendido o processo, pergunte:
- “Será que é necessário tirar apenas um grupo de três de cada vez?”
Peça que os alunos peguem outra vez 18 objetos e que formem alguns grupos de 3 para retirar de uma só vez. Vamos “fazer de conta” que um aluno sugira começar tirando 4 grupos de 3 objetos de 18.
Registre:
- “Quantas vezes você tirou grupos de 3 elementos?” (4)
- “Que operação você deve fazer para saber quantos objetos tem que retirar?” (multiplicar 4 por 3)
- “Que operação você tem que fazer para saber quantos objetos sobraram?” (subtrair 12 de 18)
Quantos objetos você tem agora?” (11)
- “É possível ainda fazer grupos de 5?” (sim)
- “Quantos?” (a criança a essa altura deve perceber que, com 11, só é possível fazer 2 grupos de 5)
A cada passo, continue registrando no quadro o que se faz concretamente:
- “Quantos objetos você tem agora?” (6)
- “Com essa quantidade você ainda pode formar conjunto de 3?” (posso)
- “Quantos?” (2) “Então, quantas vezes você vai retirar um conjunto de 3?” (duas)
- “Que operação você deve fazer para saber quantos objetos retirou?” (2 x 3)
- “Que operação você deve fazer para saber quantos objetos sobraram?” (6 – 6)
- “Quantos objetos você tem agora?” (nenhum)
- “É possível fazer novos grupos de 3?” (não)
- “Que operação você deve fazer para calcular o número total de vezes em que você retirou grupos de 3, de 18?” (4 + 2)
Só depois que as crianças estiverem familiarizadas com a técnica do algoritmo, que se baseia em subtrações repetidas, e utilizarem os fatos básicos já conhecidos, é que estarão prontas a aprender situações mais complexas da divisão, como por exemplo, uma divisão de 86 por 5.
Escreva no quadro-de-giz:
Pergunte:
- “Alguém sabe quantos grupos de 5 temos no número 86?” (vamos supor que tenham dito 8)
- “Vamos ver se está correta a resposta. Quantos grupos de 5 você formou?” (8)
- “Que operação você deve fazer para saber quantos objetos você tem que retirar?” (multiplicar 8 por 5)
- “Que operação você tem que fazer para saber quantos objetos sobraram?” (subtrair 40 de 86)
- “Com essa quantidade, você ainda pode formar grupos de 5?” (posso)
- “Quantos?” (supor que tenham sido 7)
- “Quanto você vai retirar de 46 então?” (7x5 = 35)
- “Que operação você deve fazer para saber quantos objetos sobraram?”
(subtrair 35 de 46)
“Quantas vezes você retirou agora um conjunto de 5?” (duas)
- “Que operação você deve fazer agora para saber quantos objetos sobraram?”
(subtrair 10 de 11)
- “Quantos objetos você tem agora?” (1)
- “É possível ainda fazer grupos de 5?” (não)
- “Que operação você deve fazer para calcular o número total de vezes em que você retirou grupos de 5, de 86?” (adicionar 8, 7 e 2, obtendo 17)
Nenhum comentário:
Postar um comentário